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Abstract. Document-level event factuality identification (DocEFI)
is an important task in event knowledge acquisition, which aims to
detect whether an event actually occurs or not from the perspec-
tive of the document. Unlike the sentence-level task, a document
can have multiple sentences with different event factualities, leading
to event factuality conflicts in DocEFI. Existing studies attempt to
aggregate local event factuality by exploiting document structures,
but they mostly consider textual components in the document sep-
arately, degrading complicated correlations therein. To address the
above issues, this paper proposes a novel approach, namely UR-
HAT, to improve DocEFI with uncertain relational hypergraph at-
tention networks. Particularly, we reframe a document graph as a
hypergraph, and establish beneficial n-ary correlations among tex-
tual nodes with relational hyperedges, which helps to globally con-
sider local factuality features to resolve event factuality conflicts. To
better discern the importance of event factuality features, we further
represent textual nodes with uncertain Gaussian distributions, and
propose novel uncertain relational hypergraph attention networks to
refine textual nodes with the document hypergraph. In addition, we
select factuality-related keywords as nodes to enrich event factuality
features. Experimental results demonstrate the effectiveness of our
proposed method, and outperforms previous methods on two widely
used benchmark datasets.

1 Introduction

Document-level event factuality identification (DocEFI) aims to
identify the event factuality of a target event in the document. Gener-
ally, event factuality refers to the degree of certainty about whether
an event actually happens or not from the perspective of a given text,
which is usually classified into five categories [39]: certainly happens
(CT+), certainly does not happen (CT-), possibly happens (PS+), pos-
sibly does not happen (PS-), and underspecified (Uu). As shown in
Figure 1, the event mention1 reaches in sentence S1 implies that the
mentioned event reach_agreement might happen, but it is not sure,

1 The term is usually called event trigger in event extraction studies [6, 24,
43, 44]. Here we follow previous studies [39, 35, 4] in this task.
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Figure 1. An example of a document-level event with category CT-. The
mentions in sentences can have different categories with the document.

so the mention should be classified in the category PS+. Neverthe-
less, by considering all the mentions in their associated sentences,
the model should output CT- as the document-level event factuality.
In the context of the rapid development of large generative language
models [27], such a task can help to acquire reliable event knowledge
from massive generated contents, and facilitate several downstream
applications, such as rumour detection [31], sentiment analysis [18],
and event causality identification [5, 7].

Traditional studies [26, 33, 34, 29] mostly focus on the sentence-
level task, which detects event factuality for sentences independently,
and would suffer from the event factuality conflicts in DocEFI. As
shown in Figure 1, the document contains several sentences with con-
flicting event factuality categories. S1, S2 and S8 associate the PS+
category, where the narrators express a positive standpoint and spec-
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ulative attitude towards the event, considering the word probably and
may as cues. However, S3 and S4 associate the CT category, which
expresses the negative standpoint and clear attitude towards the event
given by the official narrators. According to the statistics, there are
25.7% (English) and 37.8% (Chinese) of documents having event
factuality conflicts in the DocEFI datasets [35]. The DocEFI task re-
quires a global consideration of all the mentions in the sentences in-
volved and factuality predictions from a document-level perspective.
Such conflicting event factuality categories may confuse the model,
making the task more challenging in real-world applications.

Existing DocEFI studies [35, 4] attempt to resolve the event fac-
tuality conflicts by capturing event correlations across sentences.
Among them, Qian et al. [35] propose the DocEFI task, which adopts
an attention mechanism to adaptively learn event correlations with
implicit document structures. Then, Cao et al. [4] explicitly treat
each document as a homogeneous graph, and formulate event cor-
relations by establishing separate edges between the document and
mention nodes. They treat node features as uncertain Gaussian dis-
tributions (a.k.a., Gaussian embeddings) [47], and then employ un-
certain graph convolutional networks [54] to differentiate factuality
features. However, they consider the mentions referring to the same
event separately, which degrades the coreference relationship among
the mentions and thus hinders the understanding of the event factu-
ality at the document-level.

We argue that it is crucial to fully exploit the complicated docu-
ment structures for factuality prediction. First, a document consists
of multi-grained textual components, including sentences, mentions
and words, and a sentence may contain some keywords that explic-
itly imply the factuality of the event, such as the word probably for
PS+ in Figure 1. There are also n-ary correlations among textual
components (n is the number of textual components). For example,
in Figure 1, all mentions refer to the same document-level event,
where each mention reflects only a partial perspective on the fac-
tuality. Considering these mentions separately may degrade the en-
tire n-ary correlation, namely mentions-of-document, and easily mis-
lead the model about part of the mentions. Intuitively, the document
requires to be globally correlated with local textual components in
order to capture a global factuality perspective. Moreover, there are
also correlations among local textual components that can refine lo-
cal perspectives with other perspectives. Such complicated correla-
tions can hardly be established by simple graph structures.

To address the above issues, we propose a novel approach for
DocEFI with Uncertain Relational Hypergraph Attention networks,
termed as UR-HAT. Specifically, to construct the complicated docu-
ment structures, we formulated each document as a hypergraph [3],
which contains hyperedges that can simultaneously connect multi-
ple textual nodes, thus establishing n-ary correlations among textual
components. In addition, we devise factuality-related keyword nodes
to explicitly enrich factuality features. In order to discern the impor-
tance of nodes in correlations, we further represent node features as
Gaussian distributions, and propose uncertain hypergraph networks
to refine node features with the document hypergraph structure. In
this way, the model not only retains the factuality features in the
means, but also estimates the uncertainty of the factuality features
in the variances, which helps to discern beneficial node features in
n-ary correlations. In summary, the contributions are threefold:

• We propose a novel approach, namely UR-HAT, for the DocEFI
task. To the best of our knowledge, we are the first to exploit hy-
pergraphs to improve the understanding of event factuality at the
document level compared to previous works.

• We technically propose an uncertain relational hypergraph atten-
tion network to aggregate event factuality features, which pioneer-
ingly models the uncertainty of features in hypergraph learning.

• Experimental results indicate the effectiveness of our method2,
outperforming previous methods on two widely used datasets.

2 Preliminaries

Before going on, we briefly retrospect the hypergraph structure and
paradigmatic hypergraph neural networks.

2.1 Hypergraph Structure

Unlike conventional graphs, a hypergraph [3] is a special form of
graph that contains hyperedges that can connect two or more nodes
and is typically used to represent n-ary correlations [10]. In general,
a hypergraph is defined as G = (V, E ,P ), which contains a node
set V = {v1, ..., vn}, a hyperedge set E = {e1, ..., em}, and an
optional diagonal weight matrix P ∈ R

m×m representing the hy-
peredge weight. The hypergraph G can be denoted by an incidence
matrix H ∈ {0, 1}n×m with entries defined as follows:

Hi,j =

{
1, if vi ∈ ej
0, otherwise

(1)

where each hyperedge ej connects all the involved nodes vi, repre-
senting the correlations among these nodes. In this paper, we borrow
the idea of the hypergraph to represent n-ary correlations in the docu-
ment, providing expressiveness to establish complicated correlations.

2.2 Hypergraph Neural Networks

Hypergraph neural networks [10, 13] have been proven to be power-
ful for hypergraph learning. A typical study is HGCN [10], which de-
velops graph convolutional network (GCN) [17] upon hypergraphs.
Formally, the hypergraph convolution process can be written as:

Xl+1 = δ
(
Norm(H)P (Norm(HT )XlW l)

)
, (2)

where δ is an activation function, and Norm is the row-normalization
function for numerical stability. Actually, Eq. (2) first aggregates
node features for hyperedge representation, and then aggregates hy-
peredge features for node representation. Therefore, Ding et al. [9]
summarize a general spatial-based aggregation process:

xl+1
i = AGGRl

edge(x
l
i, {el

j |∀ej ∈ Ei}),
where el

j = AGGRl
node({xl

k|∀vk ∈ ej}),
(3)

where Ei denotes the set of hyperedges connected to node vi, and
el
j is the feature of hyperedge ej at layer l. Here AGGRnode aggre-

gates node features to generate hyperedge features, and AGGRedge

aggregates hyperedge features to generate node features. In general,
the aggregation function can also be achieved by pooling or atten-
tion mechanism [9]. In this paper, we develop the above aggregation
process from traditional certain hypergraph neural networks into an
uncertain manner, which provides more capability to consider the
uncertainty of node or hyperedge features.

2 Our source code is released at https://github.com/JiaweiSheng/UR-HAT,
and the supplemental Appendix is also available there.
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3 Approach

The goal of DocEFI is to predict event factuality category for a target
event, considering all the event mentions of sentences in the docu-
ment. To this end, we construct the document structure as a hyper-
graph, and further propose uncertain hypergraph networks to refine
the document-level event factuality features for prediction. Figure 3
outlines the overall framework of UR-HAT.

3.1 Document Hypergraph Construction

To establish document structures, we first derive keywords as addi-
tional features, and then construct the document hypergraph.

3.1.1 Factuality-Related Keyword Selection

To explicitly exploit sentence-level factuality features, we retro-
spect canonical feature selection methods, and derive factuality-
related keywords. Here we employ mutual information (MI) [25],
which mathematically measures how much information the pres-
ence/absence of a word t contributes to the sentence factuality cate-
gory c. Formally:

I(T ;C) =
∑

st∈{1,0}

∑
sc∈{1,0}

P (st, sc) log
P (st, sc)

P (st)P (sc)
(4)

where T is a random variable taking st = 1 when the sentence con-
tains word t; and C is a random variable taking sc = 1 when the
sentence is in the category c. To implement the MI scores, we rewrite
Eq. (4) using maximum likelihood estimation (MLE):

I(T = t;C = c)

=
N11

N
log

NN11

N1.N.1
+

N01

N
log

NN01

N0.N.1

+
N10

N
log

NN10

N1.N.0
+

N00

N
log

NN00

N0.N.0
,

(5)

where the N with subscripts denote the number of sentences having
the value of st and sc. For example, N10 is the number of sentences
containing the word t (i.e., st = 1) and not belonging to the category
c (i.e., sc = 0). N1. = N10 +N11 is the number of all the sentences
containing the word t (i.e., st = 1). N = N00 +N01 +N10 +N11

is the total number of sentences.
In this way, the score I(T = t;C = c) measures the relevance be-

tween word t and category c. Since we have multiple event factuality
categories, for each word t, we take the average of these categorical
scores, and finally we derive the overall relevance scores3:

Score(t) =
1

|C|
∑
c∈C

I(T = t;C = c). (6)

We measure the MI scores of words based on the training data, and
select the top 30% words as the keywords, forming a factuality key-
word set K. Then, for each sentence, we select the words contained
in K as the factuality-related keywords of the sentence.

3 Following previous works [35, 4], we also focus on the category PS+, CT+
and CT-. We show examples of selected keywords in Appendix.
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Figure 2. Relation set (R) of hyperedges, where each one corresponds to
an example of the hyperedge.

3.1.2 Document Hypergraph Construction

To promote the understanding of the factuality of events, we con-
struct each document as a hypergraph. In summary, we mainly con-
sider 4 types of nodes: document node, sentence node, mention
node and keyword node. Intuitively, the sentence/mention nodes re-
tain local factuality features, and the keyword nodes provide valuable
factuality cues associated with the sentences/mentions. The docu-
ment node summarizes the global factuality features for prediction.

In order to establish complicated correlations in the document, we
devise hyperedges with 8 relation types4, termed the set R, shown
in Figure 2. Our main intuition is to encourage the global node (doc-
ument) to consider different factuality features of local nodes (sen-
tences/mentions/keywords), and the local nodes to consider factual-
ity features with their related local nodes.

1. sentences-of-document (SOD): it connects the document node
with all the contained sentence nodes.

2. mentions-of-document (MOD): it connects the document node
with all the contained mention nodes.

3. keywords-of-sentence (KOS): it connects the sentence node with
all the contained keyword nodes.

4. keywords-of-mention (KOM): it connects the mention node with
all the keyword nodes associated in the same sentence.

5. sentences-sentences (SS): it connects all the sentence nodes con-
tained in the document.

6. mentions-mentions (MM): it connects all the mention nodes re-
ferring to the same event in the document.

7. keywords-keywords (KK): it connects all the keyword nodes con-
tained in the same sentence.

8. mention-sentence (MS): it connects the mention node with the
corresponding sentence node.

Here, edges 1-2 establish the n-ary correlations between global and
local nodes; edges 3-4 enhance the factuality features among local
nodes; edge 8 preserves factuality features between mentions and
their corresponding sentences; and edges 5-7 additionally emphasize
factuality among the nodes of the same type.

4 We perform extensive evaluations on the hyperedges and investigate the
impact of the hypergraph structure in Table 3.
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Figure 3. Overview of our proposed approach, UR-HAT. We first construct the document as a hypergraph. Then, we initialize uncertain node features with
the textual encoder, perform uncertain hypergraph networks to refine node features, and finally predict factuality category with document-level understanding.

3.2 Uncertain Feature Initialization

To discern the different importance of factuality features, we rep-
resent node features using the uncertainty modeling paradigm. First,
we derive certain textual features with BERT [8] for textual nodes. In
general, BERT employs a transformer architecture [45], which gen-
erates textual features conditioned on contextual tokens and retains
rich textual information. Formally, we input each sentence Si of the
given document into BERT to derive token features:

Xi = BERT(Si), i = 1, 2, ..., nsent, (7)

where nsent is the number of sentences in the document. We take the
feature of token [CLS] from Xi, and collect all the sentences in the
document to form sentence features X sent ∈ R

d×nsent . Here d is the
dimension of the BERT token features. We also derive the mention
features Xmen ∈ R

d×nmen and keyword features Xkey ∈ R
d×nkey by

applying mean pooling over the contained token features, where nmen

and nkey is the total number of mentions and keywords in the current
document, respectively. For the document feature Xdoc ∈ R

d×1, we
treat the document as a whole sentence [4], and input it into the same
BERT to derive the [CLS] feature. Here, for the sake of symbol
brevity, we concatenate all the above features as node features:

X0 = concat(Xsent,Xmen,Xkey,Xdoc), (8)

where X0 ∈ R
d×n, and n = nsent + nmen + nkey + 1.

Having obtained the above textual features for the nodes, we es-
timate the uncertainty of the features. Specifically, we use a Gaus-
sian distribution N (xμ, diag(xσ)) to represent each node’s feature5

rather than a deterministic feature. Here the mean X0
μ and variance

X0
σ of the node features can be derived by:

X0
μ = WμX

0, X0
σ = WδX

0, (9)

where Wμ and Wδ are learnable parameters, used to generate means
and variances. In this way, each node xi is represented as a Gaussian
distribution x0

i = N (x0
μ,i, diag(x

0
σ,i)), which not only preserves

5 In this paper, we focus on the diagonal variance matrix as it is widely con-
sidered in studies [28, 54]. For the sake of brevity, we use xσ to represent
variances, instead of x2

σ .

the original feature about event factuality in the mean x0
μ,i, but also

estimates the uncertainty of the original feature in the variance x0
σ,i.

These representations are further refined in the following networks.

3.3 Uncertain Hypergraph Networks

To refine factuality features with event correlations, we propose un-
certain hypergraph networks upon document structures. For better
illustration, this section will successively introduce the relation, un-
certainty and attention mechanisms to the general process in Eq. (3),
and the final form of uncertain hypergraph networks is in Eq. (14).

Relation Mechanism. Considering that there are multiple rela-
tions (e.g., the relation set |R| is 8) in our document hypergraph, we
first develop conventional HGCN [10] with the relation mechanism.
Inspired by RGCN [41], we achieve the general process (Eq. (3)) in
a relational multi-graph manner. Specifically, it aggregates node and
hyperedge features with relation-specific parameters, which forms:

xl+1
i = δ(

∑
r∈R

∑
ej∈Ei

1

D̄r,jj

el
jW̄

l
r + xl

iW̄
l),

where el
j = δ(

∑
r∈R

∑
vk∈ej

1

D̃r,kk

xl
kW̃

l
r),

(10)

where D̄r = diag(
∑

i Hr,ij) ∈ R
m×m and D̃r =

diag(
∑

j Hr,ij) ∈ R
n×n are the normalized incidence matrix

Hr ∈ {0, 1}n×m with the relation r ∈ R. Note that xl+1
i is the

aggregated node feature and el
j is the aggregated hyperedge feature.

W̄ l
r , W̃ l

r are learnable parameters with a specific relation r, and W̄ l

is the self-connection parameter.
Uncertainty Mechanism. As argued in previous work [54], mod-

eling the node representation as a probability distribution is use-
ful for estimating feature uncertainty. Therefore, we extend the de-
terministic relational hypergraph networks (Eq. (10)) in an uncer-
tain manner. To illustrate, taking the node representation xi =
N (xμ,i, diag(xσ,i)) as an example, we adopt the sum rule of prob-
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ability distributions [28] for aggregation:
n∑

i=1

wixi ∼ N (
n∑

i=1

wixμ,i, diag(
n∑

i=1

w2
ixσ,i)), (11)

where wi stands for a constant scalar. Applying this rule to Eq. (10),
we can achieve the node/hyperedge aggregation with uncertain fea-
tures. Therefore, we perform the aggregation on the means and vari-
ances of the nodes and hyperedges, respectively, as follows:

xl+1
μ,i =δ(

∑
r∈R

∑
ej∈Ei

1

D̄r,jj

el
μ,jW̄

l
μ,r+xl

μ,iW̄
l
μ),

xl+1
σ,i =δ(

∑
r∈R

∑
ej∈Ei

1

D̄r,jj � D̄r,jj

el
σ,jW̄

l
σ,r+xl

σ,iW̄
l
σ),

el
μ,j =δ(

∑
r∈R

∑
vk∈ej

1

D̃r,kk

xl
μ,kW̃

l
μ,r),

el
σ,j =δ(

∑
r∈R

∑
vk∈ej

1

D̃r,kk � D̃r,kk

xl
σ,kW̃

l
σ,r),

(12)

where the derived node and hyperedge features can be written as
xl+1

i = N (xl+1
μ,i , diag(x

l+1
σ,i )) and el

j = N (el
μ,j , diag(e

l
σ,j)), re-

spectively. Here � denotes element-wise production. For learning
neural representations, we impose layer-specific parameters and non-
linear activation functions on the means and variances, respectively,
since they are mathematically intractable for distributions [54].

Attention Mechanism. Considering that nodes and hyperedges
may have different importance, we further employ a variance-based
attention mechanism to assign different weights to neighbors. Intu-
itively, a smaller variance implies a lower uncertainty of the feature,
so we use a smooth exponential function to control the effect accord-
ing to its variance as follows:

αi = exp(−γxσ,i), (13)

where γ is a scaling factor on the variance. Based upon this, we apply
the attention mechanism to Eq. (12) and derive the entire uncertain

hypergraph networks as follows:

xl+1
μ,i =δ(

∑
r∈R

∑
ej∈Ei

el
μ,j � ᾱl

j

D̄r,jj

W̄ l
μ,r+xl

μ,iW̄
l
μ),

xl+1
σ,i =δ(

∑
r∈R

∑
ej∈Ei

el
σ,j � ᾱl

j � ᾱl
j

D̄r,jj � D̄r,jj

W̄ l
σ,r+xl

σ,iW̄
l
σ),

el
μ,j =δ(

∑
r∈R

∑
vk∈ej

xl
μ,k � α̃l

k

D̃r,kk

W̃ l
μ,r),

el
σ,j =δ(

∑
r∈R

∑
vk∈ej

xl
σ,k � α̃l

k � α̃l
k

D̃r,kk � D̃r,kk

W̃ l
σ,r).

(14)

where ᾱl
j = exp(−γel

σ,j) and α̃l
k = exp(−γxl

σ,k) measure the
uncertainty of the hyperedge and node features, respectively. In this
way, the generated node features take into account the feature uncer-
tainty of the related hyperedges, while the generated hyperedge fea-
tures take into account the feature uncertainty of the related nodes,
thus helping to aggregate uncertain local features in both node and
hyperedge aspects. In the following section, we denote the final out-
put node features as xμ,i and xσ,i by omitting the superscript l.

3.4 Event Factuality Prediction

Based on the learned uncertain node features N (xμ,i, diag(xσ,i)),
we generate deterministic features and then make predictions.

3.4.1 Prediction Layer

Since the distributions are intractable for classification [54], we per-
form a sampling process for all the node features, which is zi ∼
N (xμ,i, diag(xσ,i)). However, such a direct sampling process is in-
tractable for back-propagation, so we use the well-known reparame-
terization trick [16] as a solution. Mathematically, we first sample ε
from N (0, I), and then transform it into the target distribution:

zi = xμ,i + ε�√
xσ,i, ε ∼ N (0, I). (15)

Afterward, we derive the deterministic representation of the docu-
ment node zdoc and the mention nodes zmen

j , and then use them to
predict the event factuality categories of the document and mentions:

pdoc = softmax(W doczdoc + bdoc),

pmen
j = softmax(W menzmen

j + bmen),
(16)

Note that our goal is to predict event factuality pdoc at the document
level as output, and here we additionally predict the event factuality
pmen
j of mentions as an auxiliary supervision in the training phase.

3.4.2 Training Objective

For training, we adopt the cross-entropy loss on the event factuality
predictions of both the document and the mentions:

Lcls = −ydoc · log(pdoc),

Laux = −
nmen∑
j=1

ymen
j · log(pmen

j ),
(17)

The Lcls is used to achieve document-level event factuality predic-
tion, and the Laux is used to refine mention factuality features6. Fur-
thermore, we design a regulation loss to encourage the node distribu-
tions to approximate the Gaussian distribution, achieved by:

Lreg = KL(N (X0
μ,X

0
σ)||N (0, I)), (18)

where N (X0
μ,X

0
σ) is the Gaussian distributions for all node fea-

tures, and KL(·||·) is the KL-divergence [19] between distributions.
Finally, the overall objective of a document is:

L = Lcls + β1Laux + β2Lreg, (19)

where β1 and β2 are harmonic factors. We optimize all the training
documents in the mini-batch strategy with AdamW [23].

4 Experiment

In this section, we compare our proposed model with previous mod-
els, and conduct experiments to evaluate our model.

4.1 Dataset and Evaluation Metric

We conduct experiments on two widely used datasets, English and
Chinese event factuality datasets [35], which contain 1,730 and 4,650
documents, respectively. Following previous works [35, 4], since the
PS- and Uu categories cover only 1.39% and 1.20% of the docu-
ments in the English and Chinese datasets, we also mainly focus
on the performance of the CT+, CT- and PS+ categories. See Ap-

pendix for more details. For a fair comparison, we adopt 10-fold
cross-validation with exactly the same data split as previous works.
For evaluation, we adopt F1 scores with both the micro- and macro-
averaged metrics for the overall performance.

6 Note that the event factuality of each mention is provided by the datasets,
and we only use it for refining features in the training phase.
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Table 1. Results (%) on the English and Chinese event factuality datasets, respectively. The performance of our method is followed by the improvements (↑)
over the previous state-of-the-art method ULGN. The Wilcoxons test shows significant difference (p<0.05) on both F1 metrics.

Datasets Methods CT+ CT- PS+ Micro-F1 Macro-F1

MaxEntVote [35] 75.14 58.17 35.89 68.42 56.40
BiLSTM-Att [35] 79.18 65.25 53.65 73.23 66.03
SentVote [35] 83.98 70.22 57.85 78.06 70.68

English Att-Adv [35] 89.84 76.87 62.14 83.56 76.28
BERT Model [8] 89.38 71.82 69.09 83.53 76.76
GCNN [51] 91.19 80.28 70.76 86.37 80.74
ULGN [4] 92.49 84.87 76.68 88.69 84.68

UR-HAT (Ours) 93.98 (↑ 1.49) 89.25 (↑ 4.38) 78.87 (↑ 2.19) 90.93 (↑ 2.24) 87.37 (↑ 2.69)

MaxEntVote [35] 72.22 62.44 58.29 67.72 64.32
BiLSTM-Att [35] 81.89 68.82 49.78 71.12 67.28
SentVote [35] 80.68 72.66 58.39 74.70 70.58

Chinese Att-Adv [35] 87.52 83.35 74.06 84.03 81.64
BERT Model [8] 84.79 88.71 79.33 85.83 84.28
GCNN [51] 89.60 85.38 76.81 86.03 83.93
ULGN [4] 93.53 94.99 90.76 93.77 93.09

UR-HAT (Ours) 94.14 (↑ 0.61) 95.44 (↑ 0.45) 90.51 (↓ 0.25) 94.26 (↑ 0.49) 93.36 (↑ 0.27)

4.2 Implementation Details

For the implementation, we adopt BERT-base model [8] as the tex-
tual encoder. The initial learning rate is tuned in {2e-5, 3e-5, 5e-
5} with linear decay. The batch size is tuned in {1, 2, 3, 4} for both
datasets. The number of graph layers is tuned in {1, 2, ..., 6}. The
harmonic factor β1 and β2 is tuned in [0, 1] and [1e-4,1e-3], respec-
tively. The scaling factor γ is tuned in [1e-4,1e-2]. The optimal hyper-
parameters are tuned on the validation set by grid search according
to the averaged micro and macro F1 scores, which can be found in
Appendix. For baseline methods, we copy the official results from
their original literature to avoid re-implementation bias.

4.3 Baselines

For a fair comparison7, we choose the following methods as base-
lines: (1) MaxEntVote [35], which employs the maximum entropy
model to identify sentence-level event factuality, and then votes
the factuality with the most sentences as the final prediction. (2)
BiLSTM-Att [35], which employs BiLSTM for feature extraction,
and uses intra-sentence attention to capture important information in
the sentence. (3) SentVote [35], which leverages the intra-sentence
attention to identify sentence-level event factuality, and adopts a
voting strategy to make the document-level prediction. (4) Att-

Adv [35], which leverages the intra- and inter-sentence attention to
learn the document representation, and utilizes adversarial training to
improve the robustness. (5) BERT Model, which utilizes the vanilla
BERT-base model [8] to encode documents, and uses the [CLS] rep-
resentation for prediction, treating the document as a long sentence.
(6) GCNN [51], which adopts gated convolutional neural networks
with self-attention layers, and utilizes additional syntactic features to
identify the factuality. (6) ULGN [4], which deploys the document
as a conventional homogeneous graph, and adopts uncertain local-to-
global graph networks to aggregate local sentence-level event factu-
ality features for the document-level event factuality prediction.

7 We investigate recent studies [36, 37, 53], but they all require external re-
sources (such as cross-domain event data or additional event description
texts), which have quite different task settings for a fair comparison.

Table 2. Results (%) on variants of the uncertain hypergraph networks.

Datasets Methods Micro-F1 Macro-F1 ΔAvg

Entire Model 90.93 87.37 -
w/o auxiliary loss 89.94 85.75 ↓ 1.31

w/o attention 89.98 86.04 ↓ 1.14
w/o uncertainty 89.48 86.27 ↓ 1.28

English w/o relation 89.42 84.83 ↓ 2.03
w/o hypergraph 86.05 79.44 ↓ 6.41

repl. HGCN 89.21 85.52 ↓ 1.79
repl. ULGN 88.52 84.02 ↓ 2.88
repl. GCN 88.22 84.21 ↓ 2.94

BERT Model 83.53 76.76 ↓ 9.01

4.4 Main Results

The results on both datasets are shown in Table 1, which shows that:
(1) Our model outperforms all the baselines, indicating the effec-
tiveness of our model. For example, our model outperforms the best
traditional baseline and the BERT-based baseline on the English data
by 7.37 and 2.24 micro-F1 improvements respectively, reflecting the
effectiveness of the model. (2) The hypergraph structure can cap-
ture more meaningful information for the DocEFI task. Compared
to the previous state-of-the-art method ULGN, our model achieves
better results. Considering that ULGN is developed on the conven-
tional graph, our hypergraph structure can naturally capture n-ary
correlations, which provides a better capability for event factuality
inference. (3) Our model is general on the two benchmarks in dif-
ferent languages. Most of the results are higher on Chinese data than
on English data, and we find that the scale of training data is larger
on the Chinese data, where the model can learn richer features. How-
ever, our model consistently outperforms previous baselines, espe-
cially on the relatively smaller English data, which also reflects the
effectiveness of our model. In addition, we find that the PS+ cate-
gory derives relatively lower results on the Chinese data, and we find
an imbalance in the data across categories: CT-/1342, CT+/2403 and
PS+/848 of category/documents. We believe that the relatively small
data scale makes it difficult for the model to fully learn the ambigu-
ous PS+ category. Considering the significant F1 improvements on
both datasets, our model is worthy for DocEFI.
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Table 3. Results (%) on variants of the constructed document hypergraph.

Datasets Methods Micro-F1 Macro-F1 ΔAvg

Entire Graph (ours) 90.93 87.37 -

w/o node: mention 87.95 83.67 ↓ 3.34
w/o node: sentence 90.23 86.46 ↓ 0.81
w/o node: keyword 89.80 85.61 ↓ 1.45

English w/o edge: MOD 87.99 83.82 ↓ 3.25
w/o edge: SOD 89.88 85.91 ↓ 1.26
w/o edge: KOM 89.48 86.05 ↓ 1.39
w/o edge: KOS 89.73 86.33 ↓ 1.12
w/o edge: MS 90.39 86.65 ↓ 0.63
w/o edge: KK,MM,SS 90.19 86.47 ↓ 0.82

w/o hypergraph 86.05 79.44 ↓ 6.41

4.5 Analysis on Hypergraph Networks

To investigate the impact of each mechanism in the model, we run
variants on the proposed hypergraph neural networks. The results are
shown in Table 2, which shows that: (1) The “attention”, “uncer-
tainty”, and “relation” mechanisms have a positive impact on the
results. The attention mechanism helps to detect valuable node fea-
tures with higher confidence. The uncertainty mechanism measures
the uncertainty of local features across sentences, helping to resolve
the conflicting event factuality with the degree of feature uncertainty.
The relation mechanism helps to capture different semantic corre-
lations in the graph, allowing feature aggregation in different ways.
(2) The proposed hypergraph model can be more beneficial for the
DocEFI task than previous typical graph models. “repl. HGCN”
replaces the proposed model with vanilla HGCN. “repl. ULGN” and
“repl. GCN” treat hyperedges as fully connected subgraphs, and on
the graph adopt ULGN [4] and GCN respectively. It reflects the hy-
pergraph is more inferential for DocEFI, and the uncertainty manner
captures valuable information for event factuality. We provide more
details and results on both datasets in Appendix.

4.6 Analysis on Hypergraph Structures

To investigate the effect of each sub-structure in the hypergraph,
we run variants on the hypergraph structure. The results are shown
in Table 3, which shows that (1) All nodes retain useful informa-
tion for the results. In particular, the mention nodes retain crucial
local event information. The keyword nodes highlight fine-grained
factuality cues for the event in each sentence. The sentence nodes
preserve contextual information, which not only preserves factuality
cues, but also preserves syntactic and semantic meanings in texts.
(2) All edges provide useful semantic connections, especially the
edges associated with the document node. For example, the “MOD”
and “SOD” edges establish the connections between document-level
and sentence-level nodes, which helps to aggregate valuable infor-
mation from local sentences to the global document. Furthermore,
the “KOM” and “KOS” edges establish the connections between
sentence-level and word-level nodes, which aggregates information
from local keywords to the sentences involved. The “MS” edges fur-
ther represent the specific connections between the mentions and
the sentences, providing the corresponding relationship. The addi-
tional “KK,MM,SS” edges enclose the nodes with similar roles, also
providing useful effects. (3) The document hypergraph explicitly
strengthens the correlations among the related textual components.
“w/o hypergraph” removes the hypergraph structures but remain un-
certainty mechanism on node representations. The hypergraph serves

Table 4. Results (%) on the document groups of nc categories of
sentence-level factuality in the English dataset.

nc Methods Micro-F1 Macro-F1

Att-Adv 91.36 81.67
nc = 1 ULGN 92.48 85.21

UR-HAT 94.72 (↑ 2.24) 88.07 (↑ 2.86)

Att-Adv 60.91 60.04
nc > 1 ULGN 75.51 74.76

UR-HAT 76.73 (↑ 1.22) 76.22 (↑ 1.46)

as prior knowledge of the textual structures, so we can observe the
results decrease significantly without document hypergraph. We pro-
vide more details and results on both datasets in Appendix.

4.7 Analysis on Factuality Category Number

Considering there exist different sentence-level event factuality in
the document, we investigate our model on different groups of docu-
ments. The results are shown in Table 4, which shows that (1) In both
data groups, our model achieves higher performance than previous
models. We attribute the reason to the fact that the hypergraph can
be inferential for document understanding, thus improving the docu-
ment results, especially for the nc > 1 group. In addition, our model
exploits valuable factuality-related keywords, benefiting both groups.
(2) Also, all methods achieve lower results for the nc > 1 group,
indicating the need to integrate local factuality conflicts. Our model
still achieves better results, reflecting the advantage of modeling the
factuality conflicts of the sentence-level event factuality.

5 Related Work

Event factuality identification (EFI) is an important task in infor-
mation extraction, which can be helpful for event extraction [6, 24,
43, 44] and knowledge acquisition [42, 21, 22]. Pioneering studies
explore the sentence-level EFI task, which have explored rule-based
methods [26, 39], machine learning methods [30, 40, 20, 33] and
neural networks [38, 34, 14, 29]. However, an event can have con-
flicting factuality in different sentences, usually leading to confusing
factuality results in applications. Recent studies [35, 4, 36, 37, 49]
have attempted the document-level EFI task, which aims to identify
event factuality at the document level. They explore attention mech-
anisms [35, 36] or graph convolutional networks [4, 52] to aggregate
sentence factuality. However, they either neglect the global graph
structures in the document or simply represent the document as a
homogeneous graph, neglecting the crucial n-ary correlations. There
are also studies [36, 37, 53] that use external resources (like cross-
domain data) to enrich information, which is quite different from our
task. In this paper, we extend previous studies with hypergraphs to
exploit n-ary correlations in document structures, and estimate fea-
ture uncertainty to exploit different local event factuality.

Hypergraph neural networks are proven effective in several
graph-based applications [9]. Traditional graph neural networks [17,
46, 41] mostly focus on the typical graphs with pairwise edges. In
order to capture n-ary correlations with multiple nodes, recent stud-
ies [10, 1, 13] investigate hypergraph neural networks. In general,
there are several spectral-based studies [10, 2] and spatial-based stud-
ies [1, 13]. Among them, HGCN [10] develops GCN [17] into hyper-
graphs with graph convolutions. UniGNN [13] further generalizes it
with several classical GNN layer forms. There are also studies [9] ap-
plying hypergraphs in NLP tasks. In this paper, we use hypergraphs
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to exploit the n-ary correlations in document structures to promote
the understanding of event factuality at the document level.

Uncertainty modeling is a crucial topic in deep learning stud-
ies [54]. Traditional deep learning methods usually represent fea-
tures as deterministic vectors [32], which can hardly express the
uncertainty of the features [11, 15]. To this end, variational auto-
encoder (VAE) [16] represents features as probability distributions,
providing an effective way to capture the uncertainty of data. After-
wards, Vilnis and McCallum [47] propose Gaussian embeddings for
word representations considering word ambiguity. He et al. [12] in-
troduce uncertainty modeling for entity and relation representations
for knowledge graph embeddings. There are also studies [50] inves-
tigate uncertainty in few-shot scenarios for knowledge graph com-
pletion. Xiao and Wang [48] review previous works and explore un-
certainty in various NLP tasks. In this paper, we explore uncertainty
of event factuality features and propose an uncertain neural form for
hypergraph representation learning.

6 Conclusion

This paper proposes a novel approach using uncertain relational hy-
pergraph attention networks, namely UR-HAT, for the DocEFI task.
Specifically, we reframe the document graph as a hypergraph and
establish the n-ary correlations in the document. To better capture
the importance of event factuality features, we further encode tex-
tual node features with uncertain Gaussian distributions, and propose
a novel uncertain hypergraph network on top of the uncertain node
features to summarize document-level event factuality. Experiments
indicate the effectiveness on two widely-used datasets. Our future
work will enhance document structures, evaluate uncertain hyper-
graph networks in general tasks, and adapt large language models
for this downstream task.
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